You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

82 lines
3.0 KiB

#!/usr/bin/env python
# coding: utf-8
# This is the code what she teaches in the first hour in
import numpy as np
from random import randint
from sklearn.utils import shuffle
from sklearn.preprocessing import MinMaxScaler
train_labels = []
train_samples = []
for i in range(50):
train_samples.append(randint(13, 64))
train_samples.append(randint(65, 100))
for i in range(1000):
train_samples.append(randint(13, 64))
train_samples.append(randint(65, 100))
train_labels = np.array(train_labels)
train_samples = np.array(train_samples)
train_labels, train_samples = shuffle(train_labels, train_samples)
scaler = MinMaxScaler(feature_range=(0,1))
# `reshape` the data from 1D to fit in the fit() function ... instead of x we need [x]
# I assume because the array could contain any number of el, but we only have one, so it looks odd
scaled_train_samples = scaler.fit_transform(train_samples.reshape(-1, 1))
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import categorical_crossentropy
gpus = tf.config.experimental.list_physical_devices('GPU')
print('GPUs = ', len(gpus))
#tf.config.experimental.set_memory_growth(gpus[0], True)
model = Sequential([
Dense(units=16, input_shape=(1,), activation='relu'),
Dense(units=32, activation='relu'),
Dense(units=2, activation='softmax'),
model.compile(optimizer=Adam(learning_rate=0.0001), loss='sparse_categorical_crossentropy', metrics=['accuracy']), y=train_labels, batch_size=10, epochs=30, shuffle=True, verbose=2), y=train_labels, validation_split=0.1, batch_size=10, epochs=30, shuffle=True, verbose=2)
test_labels = []
test_samples = []
for i in range(10):
test_samples.append(randint(13, 64))
test_samples.append(randint(65, 100))
for i in range(200):
test_samples.append(randint(13, 64))
test_samples.append(randint(65, 100))
test_labels = np.array(test_labels)
test_samples = np.array(test_samples)
test_labels, test_samples = shuffle(test_labels, test_samples)
scaled_test_samples = scaler.fit_transform(test_samples.reshape(-1, 1))
# # Predict
predictions = model.predict(x=scaled_test_samples, batch_size=10, verbose=0)
# seems to work ONLY in jupyter
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
rounded_predictions = np.argmax(predictions, axis=-1)
cm = confusion_matrix(y_true=test_labels, y_pred=rounded_predictions)
cm_plot_labels = ['no_side_fx', 'has_side_fx']
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=cm_plot_labels)