You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
8.1 KiB
Matlab
183 lines
8.1 KiB
Matlab
function pcbc_prob_4basis_hierarchical()
|
|
%calculate fn(a,b,c), where a, b and c are real numbers (in a limited range) and fn is +
|
|
Ainputs=[-60:5:60];
|
|
Binputs=[-60:5:60];
|
|
ABinputs=[min(Ainputs)+min(Binputs):10:max(Ainputs)+max(Binputs)];
|
|
Cinputs=[-60:5:60];
|
|
Dinputs=[min(ABinputs)+min(Cinputs):10:max(ABinputs)+max(Cinputs)];
|
|
Acentres=[-60:5:60];
|
|
Bcentres=[-60:5:60];
|
|
ABcentres=[-120:5:120];
|
|
Ccentres=[-60:5:60];
|
|
|
|
%define weights, to produce two interconnected 2d basis function networks, where nodes have gaussian RFs.
|
|
W{1}=[];
|
|
for a=Acentres
|
|
for b=Bcentres
|
|
ab=a+b;
|
|
W{1}=[W{1};code(a,Ainputs,5,0,1),code(b,Binputs,5,0,1),code(ab,ABinputs,5,0,1)];
|
|
end
|
|
end
|
|
W{1}=W{1}./3;
|
|
interconnects{1,2}=[length(Ainputs)+length(Binputs)+[1:length(ABinputs)]];%partition in stage 1 that receives/sends to stage 2
|
|
W{2}=[];
|
|
for ab=ABcentres
|
|
for c=Ccentres
|
|
d=ab+c;
|
|
W{2}=[W{2};code(ab,ABinputs,5,0,1),code(c,Cinputs,5,0,1),code(d,Dinputs,5,0,1)];
|
|
end
|
|
end
|
|
W{2}=W{2}./3;
|
|
interconnects{2,1}=[1:length(ABinputs)];%partition in stage 2 that receives/sends to stage 1
|
|
[n1,m1]=size(W{1});
|
|
[n2,m2]=size(W{2});
|
|
n=n1+n2
|
|
|
|
%define test cases
|
|
stdx=10;
|
|
X{1}=zeros(m1,4);
|
|
X{2}=zeros(m2,4);
|
|
nullD=zeros(1,length(Dinputs));
|
|
nullAB=zeros(1,length(ABinputs));
|
|
%function approximation:
|
|
X{1}(:,1)=[code(-30,Ainputs,stdx),code(20,Binputs,stdx),nullAB]'; X{2}(:,1)=[nullAB,code(20,Cinputs,stdx),nullD]'; %-30+20+20=?
|
|
X{1}(:,2)=[code(-30,Ainputs,stdx),zeros(1,length(Binputs)),nullAB]'; X{2}(:,2)=[nullAB,code(20,Cinputs,stdx),code(10,Dinputs,stdx)]'; %-30+?+20=10?
|
|
X{1}(:,3)=[code(30,Ainputs,stdx)+code(-30,Ainputs,stdx),code(20,Binputs,stdx),nullAB]'; X{2}(:,3)=[nullAB,code(20,Cinputs,stdx),nullD]'; %(30 &-30)+20+20=?
|
|
X{1}(:,4)=[code(-30,Ainputs,stdx),zeros(1,length(Binputs)),nullAB]'; X{2}(:,4)=[nullAB,code(20,Cinputs,stdx),nullD]'; %-30+20+20=?
|
|
%feature integration:
|
|
X{1}(:,5)=[code(-30,Ainputs,stdx),code(20,Binputs,stdx),nullAB]'; X{2}(:,5)=[nullAB,code(20,Cinputs,stdx),code(0,Dinputs,stdx)]'; %-30+20+20=0!
|
|
X{1}(:,6)=[code(-30,Ainputs,stdx),code(20,Binputs,stdx),nullAB]'; X{2}(:,6)=[nullAB,code(20,Cinputs,stdx),code(0,Dinputs,stdx*2,0,0,stdx)]'; %-30+20+20=0!
|
|
expon=[1,1,1,1,2,2];
|
|
|
|
for k=1:size(X{1},2)
|
|
x{1}=X{1}(:,k);
|
|
x{2}=X{2}(:,k);
|
|
[y,e,r,xnew]=dim_activation_hierarchical(W,x,interconnects);
|
|
figure(k),clf
|
|
xtmp=[x{1}(1:length(Ainputs)+length(Binputs));x{2}(1+length(ABinputs):end)];
|
|
rtmp=[r{1}(1:length(Ainputs)+length(Binputs));r{2}(1+length(ABinputs):end)];
|
|
plot_result4(xtmp,rtmp,y,expon(k),Ainputs,Binputs,Cinputs,Dinputs,1);
|
|
print(gcf, '-dpdf', ['probability_4basis_hierarchical',int2str(k),'.pdf']);
|
|
end
|
|
|
|
|
|
|
|
%test performance over many trials
|
|
trials=1e5
|
|
range=25;
|
|
%test accuracy of calculating d=a+b+c using noisy population codes
|
|
disp('test d=a+b+c');
|
|
compare_means=zeros(trials,3);
|
|
compare_vars=zeros(trials,3);
|
|
for k=1:trials
|
|
a=(2*range)*rand-range;
|
|
b=(2*range)*rand-range;
|
|
c=(2*range)*rand-range;
|
|
astd=10+10*rand;
|
|
bstd=10+10*rand;
|
|
cstd=10+10*rand;
|
|
x{1}=[code(a,Ainputs,astd,1,0,stdx),code(b,Binputs,bstd,1,0,stdx),nullAB]'; %noisy input PPCs
|
|
x{2}=[nullAB,code(c,Cinputs,cstd,1,0,stdx),nullD]'; %noisy input PPCs
|
|
xtmp=[x{1}(1:length(Ainputs)+length(Binputs));x{2}(1+length(ABinputs):end)];
|
|
[amu,avar]=decode(xtmp(1:length(Ainputs))',Ainputs);
|
|
[bmu,bvar]=decode(xtmp(length(Ainputs)+[1:length(Binputs)])',Binputs);
|
|
[cmu,cvar]=decode(xtmp(length(Ainputs)+length(Binputs)+[1:length(Cinputs)])',Cinputs);
|
|
|
|
[y,e,r]=dim_activation_hierarchical(W,x,interconnects);
|
|
rtmp=[r{1}(1:length(Ainputs)+length(Binputs));r{2}(1+length(ABinputs):end)];
|
|
[estmu,estvar]=decode(rtmp(1+length(Ainputs)+length(Binputs)+length(Cinputs):end)',Dinputs);
|
|
|
|
compare_means(k,:)=[a+b+c,amu+bmu+cmu,estmu];
|
|
compare_vars(k,:)=[astd^2+bstd^2+cstd^2,avar+bvar+cvar,estvar];
|
|
end
|
|
toplot=1:100;
|
|
figure(size(X{1},2)+1),clf
|
|
plot(compare_means(toplot,2),compare_means(toplot,3),'o','MarkerFaceColor','b','MarkerSize',6);
|
|
hold on
|
|
plot([-80,80],[-80,80],'k--','LineWidth',2)
|
|
set(gca,'YTick',[-70:70:70],'XTick',[-70:70:70],'FontSize',15)
|
|
axis('equal','tight')
|
|
xlabel({'Optimal Estimate of Mean ';' '});
|
|
ylabel('Network Estimate of Mean ')
|
|
set(gcf,'PaperSize',[10 8],'PaperPosition',[0 0.25 10 7.5],'PaperOrientation','Portrait');
|
|
print(gcf, '-dpdf', ['probability_4basis_hierarchical_mean_accuracy.pdf']);
|
|
|
|
figure(size(X{1},2)+2),clf
|
|
plot(compare_vars(toplot,2),compare_vars(toplot,3),'o','MarkerFaceColor','b','MarkerSize',6);
|
|
hold on
|
|
plot([100,1200],[100,1200],'k--','LineWidth',2)
|
|
set(gca,'YTick',[200:400:1000],'YTickLabel',' ','XTick',[200:400:1000],'FontSize',15)
|
|
text([100,100,100]-10,[200:400:1000],int2str([200:400:1000]'),'Rotation',90,'VerticalAlignment','bottom','HorizontalAlignment','center','FontSize',15)
|
|
axis('equal','tight')
|
|
xlabel({'Optimal Estimate of \sigma^2 ';' '});
|
|
ylabel({'Network Estimate of \sigma^2 ';' '});
|
|
set(gcf,'PaperSize',[10 8],'PaperPosition',[0 0 10 8],'PaperOrientation','Portrait');
|
|
print(gcf, '-dpdf', ['probability_4basis_hierarchical_var_accuracy.pdf']);
|
|
|
|
error=abs(compare_means(:,2)-compare_means(:,3));
|
|
disp('Comparing Means (difference between network and optimal estimate)')
|
|
disp([' Max=',num2str(max(error)),' Median=',num2str(median(error)),' Mean=',num2str(mean(error))]);
|
|
|
|
error=100.*abs(compare_vars(:,2)-compare_vars(:,3))./compare_vars(:,2);
|
|
disp('Comparing Variances (% difference between network and optimal estimate)')
|
|
disp([' Max=',num2str(max(error)),' Median=',num2str(median(error)),' Mean=',num2str(mean(error))]);
|
|
|
|
|
|
%test accuracy of calculating b=d-c-a using noisy population codes
|
|
disp('test b=d-c-a');
|
|
compare_means=zeros(trials,3);
|
|
compare_vars=zeros(trials,3);
|
|
for k=1:trials
|
|
a=(2*range)*rand-range;
|
|
b=(2*range)*rand-range;
|
|
c=(2*range)*rand-range;
|
|
d=a+b+c;
|
|
astd=10+5*rand;
|
|
cstd=10+5*rand;
|
|
dstd=10+5*rand;
|
|
x{1}=[code(a,Ainputs,astd,1,0,stdx),zeros(1,length(Binputs)),nullAB]';%noisy input PPCs
|
|
x{2}=[nullAB,code(c,Cinputs,cstd,1,0,stdx),code(d,Dinputs,dstd,1,0,stdx)]'; %noisy input PPCs
|
|
xtmp=[x{1}(1:length(Ainputs)+length(Binputs));x{2}(1+length(ABinputs):end)];
|
|
[amu,avar]=decode(xtmp(1:length(Ainputs))',Ainputs);
|
|
[cmu,cvar]=decode(xtmp(length(Ainputs)+length(Binputs)+[1:length(Cinputs)])',Cinputs);
|
|
[dmu,dvar]=decode(xtmp(1+length(Ainputs)+length(Binputs)+length(Cinputs):end)',Dinputs);
|
|
|
|
[y,e,r]=dim_activation_hierarchical(W,x,interconnects);
|
|
rtmp=[r{1}(1:length(Ainputs)+length(Binputs));r{2}(1+length(ABinputs):end)];
|
|
[estmu,estvar]=decode(rtmp(length(Ainputs)+[1:length(Binputs)])',Binputs);
|
|
|
|
compare_means(k,:)=[d-c-a,dmu-cmu-amu,estmu];
|
|
compare_vars(k,:)=[dstd^2+cstd^2+astd^2,dvar+cvar+avar,estvar];
|
|
end
|
|
figure(size(X{1},2)+3),clf
|
|
plot(compare_means(toplot,2),compare_means(toplot,3),'o','MarkerFaceColor','b','MarkerSize',6);
|
|
hold on
|
|
plot([-30,30],[-30,30],'k--','LineWidth',2)
|
|
set(gca,'YTick',[-25:25:25],'XTick',[-25:25:25],'FontSize',15)
|
|
axis('equal','tight')
|
|
xlabel({'Optimal Estimate of Mean ';' '});
|
|
ylabel('Network Estimate of Mean ')
|
|
set(gcf,'PaperSize',[10 8],'PaperPosition',[0 0.25 10 7.5],'PaperOrientation','Portrait');
|
|
print(gcf, '-dpdf', ['probability_4basis_hierarchical_mean_accuracyB.pdf']);
|
|
|
|
figure(size(X{1},2)+4),clf
|
|
plot(compare_vars(toplot,2),compare_vars(toplot,3),'o','MarkerFaceColor','b','MarkerSize',6);
|
|
hold on
|
|
plot([100,700],[100,700],'k--','LineWidth',2)
|
|
set(gca,'YTick',[200:200:600],'YTickLabel',' ','XTick',[200:200:600],'FontSize',15)
|
|
text([100,100,100]-10,[200:200:600],int2str([200:200:600]'),'Rotation',90,'VerticalAlignment','bottom','HorizontalAlignment','center','FontSize',15)
|
|
axis('equal','tight')
|
|
xlabel({'Optimal Estimate of \sigma^2 ';' '});
|
|
ylabel({'Network Estimate of \sigma^2 ';' '});
|
|
set(gcf,'PaperSize',[10 8],'PaperPosition',[0 0 10 8],'PaperOrientation','Portrait');
|
|
print(gcf, '-dpdf', ['probability_4basis_hierarchical_var_accuracyB.pdf']);
|
|
|
|
error=abs(compare_means(:,2)-compare_means(:,3));
|
|
disp('Comparing Means (difference between network and optimal estimate)')
|
|
disp([' Max=',num2str(max(error)),' Median=',num2str(median(error)),' Mean=',num2str(mean(error))]);
|
|
|
|
error=100.*abs(compare_vars(:,2)-compare_vars(:,3))./compare_vars(:,2);
|
|
disp('Comparing Variances (% difference between network and optimal estimate)')
|
|
disp([' Max=',num2str(max(error)),' Median=',num2str(median(error)),' Mean=',num2str(mean(error))]);
|
|
|