You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

35 lines
809 B
Matlab

function [y,e,r]=dim_activation(W,x,V,y)
[n,m]=size(W);
[nInputChannels,batchLen]=size(x);
%set parameters
epsilon1=1e-6;
epsilon2=1e-3;
iterations=50;
%maxIterations=1000;
if nargin<4 || isempty(y)
y=zeros(n,batchLen,'single'); %initialise prediction neuron outputs
end
if nargin<3 || isempty(V)
%set feedback weights equal to feedforward weights normalized by maximum value
V=bsxfun(@rdivide,W,max(1e-6,max(W,[],2)));
end
V=V'; %avoid having to take transpose at each iteration
%iterate to find steady-state response to input t=0;
%ediff=Inf;eprev=0;t=0;
%while t<maxIterations && ediff>0.01
% t=t+1;
for t=1:iterations
%update responses
r=V*y;
%e=x./max(epsilon2,r);
e=x./(epsilon2+r);
%y=max(epsilon1,y).*(W*e);
y=(epsilon1+y).*(W*e);
%ediff=sum(abs(e-eprev));
%eprev=e;
end