MicroDexed is a compatible 6-operator-FM-synth based on the Teensy(-3.6/-4.x) Microcontroller. https://www.parasitstudio.de
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

283 lines
8.9 KiB

/*
Copyright 2012 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "config.h"
#include <math.h>
#include <cstdlib>
#ifdef HAVE_NEON
#include <cpu-features.h>
#endif
#include "synth.h"
#include "sin.h"
#include "fm_op_kernel.h"
#ifdef HAVE_NEON
static bool hasNeon() {
return true;
return (android_getCpuFeatures() & ANDROID_CPU_ARM_FEATURE_NEON) != 0;
}
extern "C"
void neon_fm_kernel(const int *in, const int *busin, int *out, int count,
int32_t phase0, int32_t freq, int32_t gain1, int32_t dgain);
const int32_t __attribute__ ((aligned(16))) zeros[_N_] = {0};
#else
static bool hasNeon() {
return false;
}
#endif
void FmOpKernel::compute(int32_t *output, const int32_t *input,
int32_t phase0, int32_t freq,
int32_t gain1, int32_t gain2, bool add) {
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
int32_t gain = gain1;
int32_t phase = phase0;
if (hasNeon()) {
#ifdef HAVE_NEON
neon_fm_kernel(input, add ? output : zeros, output, _N_,
phase0, freq, gain, dgain);
#endif
} else {
if (add) {
for (int i = 0; i < _N_; i++) {
gain += dgain;
int32_t y = Sin::lookup(phase + input[i]);
int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24;
output[i] += y1;
phase += freq;
}
} else {
for (int i = 0; i < _N_; i++) {
gain += dgain;
int32_t y = Sin::lookup(phase + input[i]);
int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24;
output[i] = y1;
phase += freq;
}
}
}
}
void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq,
int32_t gain1, int32_t gain2, bool add) {
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
int32_t gain = gain1;
int32_t phase = phase0;
if (hasNeon()) {
#ifdef HAVE_NEON
neon_fm_kernel(zeros, add ? output : zeros, output, _N_,
phase0, freq, gain, dgain);
#endif
} else {
if (add) {
for (int i = 0; i < _N_; i++) {
gain += dgain;
int32_t y = Sin::lookup(phase);
int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24;
output[i] += y1;
phase += freq;
}
} else {
for (int i = 0; i < _N_; i++) {
gain += dgain;
int32_t y = Sin::lookup(phase);
int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24;
output[i] = y1;
phase += freq;
}
}
}
}
#define noDOUBLE_ACCURACY
#define HIGH_ACCURACY
void FmOpKernel::compute_fb(int32_t *output, int32_t phase0, int32_t freq,
int32_t gain1, int32_t gain2,
int32_t *fb_buf, int fb_shift, bool add) {
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
int32_t gain = gain1;
int32_t phase = phase0;
int32_t y0 = fb_buf[0];
int32_t y = fb_buf[1];
if (add) {
for (int i = 0; i < _N_; i++) {
gain += dgain;
int32_t scaled_fb = (y0 + y) >> (fb_shift + 1);
y0 = y;
y = Sin::lookup(phase + scaled_fb);
y = ((int64_t)y * (int64_t)gain) >> 24;
output[i] += y;
phase += freq;
}
} else {
for (int i = 0; i < _N_; i++) {
gain += dgain;
int32_t scaled_fb = (y0 + y) >> (fb_shift + 1);
y0 = y;
y = Sin::lookup(phase + scaled_fb);
y = ((int64_t)y * (int64_t)gain) >> 24;
output[i] = y;
phase += freq;
}
}
fb_buf[0] = y0;
fb_buf[1] = y;
}
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
// Experimental sine wave generators below
#if 0
// Results: accuracy 64.3 mean, 170 worst case
// high accuracy: 5.0 mean, 49 worst case
void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq,
int32_t gain1, int32_t gain2, bool add) {
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
int32_t gain = gain1;
int32_t phase = phase0;
#ifdef HIGH_ACCURACY
int32_t u = Sin::compute10(phase << 6);
u = ((int64_t)u * gain) >> 30;
int32_t v = Sin::compute10((phase << 6) + (1 << 28)); // quarter cycle
v = ((int64_t)v * gain) >> 30;
int32_t s = Sin::compute10(freq << 6);
int32_t c = Sin::compute10((freq << 6) + (1 << 28));
#else
int32_t u = Sin::compute(phase);
u = ((int64_t)u * gain) >> 24;
int32_t v = Sin::compute(phase + (1 << 22)); // quarter cycle
v = ((int64_t)v * gain) >> 24;
int32_t s = Sin::compute(freq) << 6;
int32_t c = Sin::compute(freq + (1 << 22)) << 6;
#endif
for (int i = 0; i < _N_; i++) {
output[i] = u;
int32_t t = ((int64_t)v * (int64_t)c - (int64_t)u * (int64_t)s) >> 30;
u = ((int64_t)u * (int64_t)c + (int64_t)v * (int64_t)s) >> 30;
v = t;
}
}
#endif
#if 0
// Results: accuracy 392.3 mean, 15190 worst case (near freq = 0.5)
// for freq < 0.25, 275.2 mean, 716 worst
// high accuracy: 57.4 mean, 7559 worst
// freq < 0.25: 17.9 mean, 78 worst
void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq,
int32_t gain1, int32_t gain2, bool add) {
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
int32_t gain = gain1;
int32_t phase = phase0;
#ifdef HIGH_ACCURACY
int32_t u = floor(gain * sin(phase * (M_PI / (1 << 23))) + 0.5);
int32_t v = floor(gain * cos((phase - freq * 0.5) * (M_PI / (1 << 23))) + 0.5);
int32_t a = floor((1 << 25) * sin(freq * (M_PI / (1 << 24))) + 0.5);
#else
int32_t u = Sin::compute(phase);
u = ((int64_t)u * gain) >> 24;
int32_t v = Sin::compute(phase + (1 << 22) - (freq >> 1));
v = ((int64_t)v * gain) >> 24;
int32_t a = Sin::compute(freq >> 1) << 1;
#endif
for (int i = 0; i < _N_; i++) {
output[i] = u;
v -= ((int64_t)a * (int64_t)u) >> 24;
u += ((int64_t)a * (int64_t)v) >> 24;
}
}
#endif
#if 0
// Results: accuracy 370.0 mean, 15480 worst case (near freq = 0.5)
// with FRAC_NUM accuracy initialization: mean 1.55, worst 58 (near freq = 0)
// with high accuracy: mean 4.2, worst 292 (near freq = 0.5)
void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq,
int32_t gain1, int32_t gain2, bool add) {
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
int32_t gain = gain1;
int32_t phase = phase0;
#ifdef DOUBLE_ACCURACY
int32_t u = floor((1 << 30) * sin(phase * (M_PI / (1 << 23))) + 0.5);
FRAC_NUM a_d = sin(freq * (M_PI / (1 << 24)));
int32_t v = floor((1LL << 31) * a_d * cos((phase - freq * 0.5) *
(M_PI / (1 << 23))) + 0.5);
int32_t aa = floor((1LL << 31) * a_d * a_d + 0.5);
#else
#ifdef HIGH_ACCURACY
int32_t u = Sin::compute10(phase << 6);
int32_t v = Sin::compute10((phase << 6) + (1 << 28) - (freq << 5));
int32_t a = Sin::compute10(freq << 5);
v = ((int64_t)v * (int64_t)a) >> 29;
int32_t aa = ((int64_t)a * (int64_t)a) >> 29;
#else
int32_t u = Sin::compute(phase) << 6;
int32_t v = Sin::compute(phase + (1 << 22) - (freq >> 1));
int32_t a = Sin::compute(freq >> 1);
v = ((int64_t)v * (int64_t)a) >> 17;
int32_t aa = ((int64_t)a * (int64_t)a) >> 17;
#endif
#endif
if (aa < 0) aa = (1 << 31) - 1;
for (int i = 0; i < _N_; i++) {
gain += dgain;
output[i] = ((int64_t)u * (int64_t)gain) >> 30;
v -= ((int64_t)aa * (int64_t)u) >> 29;
u += v;
}
}
#endif
#if 0
// Results:: accuracy 112.3 mean, 4262 worst (near freq = 0.5)
// high accuracy 2.9 mean, 143 worst
void FmOpKernel::compute_pure(int32_t *output, int32_t phase0, int32_t freq,
int32_t gain1, int32_t gain2, bool add) {
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
int32_t gain = gain1;
int32_t phase = phase0;
#ifdef HIGH_ACCURACY
int32_t u = Sin::compute10(phase << 6);
int32_t lastu = Sin::compute10((phase - freq) << 6);
int32_t a = Sin::compute10((freq << 6) + (1 << 28)) << 1;
#else
int32_t u = Sin::compute(phase) << 6;
int32_t lastu = Sin::compute(phase - freq) << 6;
int32_t a = Sin::compute(freq + (1 << 22)) << 7;
#endif
if (a < 0 && freq < 256) a = (1 << 31) - 1;
if (a > 0 && freq > 0x7fff00) a = -(1 << 31);
for (int i = 0; i < _N_; i++) {
gain += dgain;
output[i] = ((int64_t)u * (int64_t)gain) >> 30;
//output[i] = u;
int32_t newu = (((int64_t)u * (int64_t)a) >> 30) - lastu;
lastu = u;
u = newu;
}
}
#endif