FreeBSD source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2042 lines
44 KiB

/*-
* Copyright (c) 2007 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Stand-alone file reading package.
*/
#include <stand.h>
#include <sys/disk.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/queue.h>
#include <part.h>
#include <stddef.h>
#include <stdarg.h>
#include <string.h>
#include <bootstrap.h>
#include "libzfs.h"
#include "zfsimpl.c"
/* Define the range of indexes to be populated with ZFS Boot Environments */
#define ZFS_BE_FIRST 4
#define ZFS_BE_LAST 8
static int zfs_open(const char *path, struct open_file *f);
static int zfs_close(struct open_file *f);
static int zfs_read(struct open_file *f, void *buf, size_t size, size_t *resid);
static off_t zfs_seek(struct open_file *f, off_t offset, int where);
static int zfs_stat(struct open_file *f, struct stat *sb);
static int zfs_readdir(struct open_file *f, struct dirent *d);
static int zfs_mount(const char *dev, const char *path, void **data);
static int zfs_unmount(const char *dev, void *data);
static void zfs_bootenv_initial(const char *envname, spa_t *spa,
const char *name, const char *dsname, int checkpoint);
static void zfs_checkpoints_initial(spa_t *spa, const char *name,
const char *dsname);
struct devsw zfs_dev;
struct fs_ops zfs_fsops = {
.fs_name = "zfs",
.fo_open = zfs_open,
.fo_close = zfs_close,
.fo_read = zfs_read,
.fo_write = null_write,
.fo_seek = zfs_seek,
.fo_stat = zfs_stat,
.fo_readdir = zfs_readdir,
.fo_mount = zfs_mount,
.fo_unmount = zfs_unmount
};
/*
* In-core open file.
*/
struct file {
off_t f_seekp; /* seek pointer */
dnode_phys_t f_dnode;
uint64_t f_zap_type; /* zap type for readdir */
uint64_t f_num_leafs; /* number of fzap leaf blocks */
zap_leaf_phys_t *f_zap_leaf; /* zap leaf buffer */
};
static int zfs_env_index;
static int zfs_env_count;
SLIST_HEAD(zfs_be_list, zfs_be_entry) zfs_be_head = SLIST_HEAD_INITIALIZER(zfs_be_head);
struct zfs_be_list *zfs_be_headp;
struct zfs_be_entry {
char *name;
SLIST_ENTRY(zfs_be_entry) entries;
} *zfs_be, *zfs_be_tmp;
/*
* Open a file.
*/
static int
zfs_open(const char *upath, struct open_file *f)
{
struct zfsmount *mount = (struct zfsmount *)f->f_devdata;
struct file *fp;
int rc;
if (f->f_dev != &zfs_dev)
return (EINVAL);
/* allocate file system specific data structure */
fp = calloc(1, sizeof(struct file));
if (fp == NULL)
return (ENOMEM);
f->f_fsdata = fp;
rc = zfs_lookup(mount, upath, &fp->f_dnode);
fp->f_seekp = 0;
if (rc) {
f->f_fsdata = NULL;
free(fp);
}
return (rc);
}
static int
zfs_close(struct open_file *f)
{
struct file *fp = (struct file *)f->f_fsdata;
dnode_cache_obj = NULL;
f->f_fsdata = NULL;
free(fp);
return (0);
}
/*
* Copy a portion of a file into kernel memory.
* Cross block boundaries when necessary.
*/
static int
zfs_read(struct open_file *f, void *start, size_t size, size_t *resid /* out */)
{
const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
struct file *fp = (struct file *)f->f_fsdata;
struct stat sb;
size_t n;
int rc;
rc = zfs_stat(f, &sb);
if (rc)
return (rc);
n = size;
if (fp->f_seekp + n > sb.st_size)
n = sb.st_size - fp->f_seekp;
rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, start, n);
if (rc)
return (rc);
if (0) {
int i;
for (i = 0; i < n; i++)
putchar(((char*) start)[i]);
}
fp->f_seekp += n;
if (resid)
*resid = size - n;
return (0);
}
static off_t
zfs_seek(struct open_file *f, off_t offset, int where)
{
struct file *fp = (struct file *)f->f_fsdata;
switch (where) {
case SEEK_SET:
fp->f_seekp = offset;
break;
case SEEK_CUR:
fp->f_seekp += offset;
break;
case SEEK_END:
{
struct stat sb;
int error;
error = zfs_stat(f, &sb);
if (error != 0) {
errno = error;
return (-1);
}
fp->f_seekp = sb.st_size - offset;
break;
}
default:
errno = EINVAL;
return (-1);
}
return (fp->f_seekp);
}
static int
zfs_stat(struct open_file *f, struct stat *sb)
{
const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
struct file *fp = (struct file *)f->f_fsdata;
return (zfs_dnode_stat(spa, &fp->f_dnode, sb));
}
static int
zfs_readdir(struct open_file *f, struct dirent *d)
{
const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
struct file *fp = (struct file *)f->f_fsdata;
mzap_ent_phys_t mze;
struct stat sb;
size_t bsize = fp->f_dnode.dn_datablkszsec << SPA_MINBLOCKSHIFT;
int rc;
rc = zfs_stat(f, &sb);
if (rc)
return (rc);
if (!S_ISDIR(sb.st_mode))
return (ENOTDIR);
/*
* If this is the first read, get the zap type.
*/
if (fp->f_seekp == 0) {
rc = dnode_read(spa, &fp->f_dnode,
0, &fp->f_zap_type, sizeof(fp->f_zap_type));
if (rc)
return (rc);
if (fp->f_zap_type == ZBT_MICRO) {
fp->f_seekp = offsetof(mzap_phys_t, mz_chunk);
} else {
rc = dnode_read(spa, &fp->f_dnode,
offsetof(zap_phys_t, zap_num_leafs),
&fp->f_num_leafs,
sizeof(fp->f_num_leafs));
if (rc)
return (rc);
fp->f_seekp = bsize;
fp->f_zap_leaf = malloc(bsize);
if (fp->f_zap_leaf == NULL)
return (ENOMEM);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp,
fp->f_zap_leaf,
bsize);
if (rc)
return (rc);
}
}
if (fp->f_zap_type == ZBT_MICRO) {
mzap_next:
if (fp->f_seekp >= bsize)
return (ENOENT);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp, &mze, sizeof(mze));
if (rc)
return (rc);
fp->f_seekp += sizeof(mze);
if (!mze.mze_name[0])
goto mzap_next;
d->d_fileno = ZFS_DIRENT_OBJ(mze.mze_value);
d->d_type = ZFS_DIRENT_TYPE(mze.mze_value);
strcpy(d->d_name, mze.mze_name);
d->d_namlen = strlen(d->d_name);
return (0);
} else {
zap_leaf_t zl;
zap_leaf_chunk_t *zc, *nc;
int chunk;
size_t namelen;
char *p;
uint64_t value;
/*
* Initialise this so we can use the ZAP size
* calculating macros.
*/
zl.l_bs = ilog2(bsize);
zl.l_phys = fp->f_zap_leaf;
/*
* Figure out which chunk we are currently looking at
* and consider seeking to the next leaf. We use the
* low bits of f_seekp as a simple chunk index.
*/
fzap_next:
chunk = fp->f_seekp & (bsize - 1);
if (chunk == ZAP_LEAF_NUMCHUNKS(&zl)) {
fp->f_seekp = rounddown2(fp->f_seekp, bsize) + bsize;
chunk = 0;
/*
* Check for EOF and read the new leaf.
*/
if (fp->f_seekp >= bsize * fp->f_num_leafs)
return (ENOENT);
rc = dnode_read(spa, &fp->f_dnode,
fp->f_seekp,
fp->f_zap_leaf,
bsize);
if (rc)
return (rc);
}
zc = &ZAP_LEAF_CHUNK(&zl, chunk);
fp->f_seekp++;
if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
goto fzap_next;
namelen = zc->l_entry.le_name_numints;
if (namelen > sizeof(d->d_name))
namelen = sizeof(d->d_name);
/*
* Paste the name back together.
*/
nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
p = d->d_name;
while (namelen > 0) {
int len;
len = namelen;
if (len > ZAP_LEAF_ARRAY_BYTES)
len = ZAP_LEAF_ARRAY_BYTES;
memcpy(p, nc->l_array.la_array, len);
p += len;
namelen -= len;
nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
}
d->d_name[sizeof(d->d_name) - 1] = 0;
/*
* Assume the first eight bytes of the value are
* a uint64_t.
*/
value = fzap_leaf_value(&zl, zc);
d->d_fileno = ZFS_DIRENT_OBJ(value);
d->d_type = ZFS_DIRENT_TYPE(value);
d->d_namlen = strlen(d->d_name);
return (0);
}
}
/*
* if path is NULL, create mount structure, but do not add it to list.
*/
static int
zfs_mount(const char *dev, const char *path, void **data)
{
struct zfs_devdesc *zfsdev;
spa_t *spa;
struct zfsmount *mnt;
int rv;
errno = 0;
zfsdev = malloc(sizeof(*zfsdev));
if (zfsdev == NULL)
return (errno);
rv = zfs_parsedev(zfsdev, dev + 3, NULL);
if (rv != 0) {
free(zfsdev);
return (rv);
}
spa = spa_find_by_dev(zfsdev);
if (spa == NULL)
return (ENXIO);
mnt = calloc(1, sizeof(*mnt));
if (mnt != NULL && path != NULL)
mnt->path = strdup(path);
rv = errno;
if (mnt != NULL)
rv = zfs_mount_impl(spa, zfsdev->root_guid, mnt);
free(zfsdev);
if (rv == 0 && mnt != NULL && mnt->objset.os_type != DMU_OST_ZFS) {
printf("Unexpected object set type %ju\n",
(uintmax_t)mnt->objset.os_type);
rv = EIO;
}
if (rv != 0) {
if (mnt != NULL)
free(mnt->path);
free(mnt);
return (rv);
}
if (mnt != NULL) {
*data = mnt;
if (path != NULL)
STAILQ_INSERT_TAIL(&zfsmount, mnt, next);
}
return (rv);
}
static int
zfs_unmount(const char *dev, void *data)
{
struct zfsmount *mnt = data;
STAILQ_REMOVE(&zfsmount, mnt, zfsmount, next);
free(mnt->path);
free(mnt);
return (0);
}
static int
vdev_read(vdev_t *vdev, void *priv, off_t offset, void *buf, size_t bytes)
{
int fd, ret;
size_t res, head, tail, total_size, full_sec_size;
unsigned secsz, do_tail_read;
off_t start_sec;
char *outbuf, *bouncebuf;
fd = (uintptr_t) priv;
outbuf = (char *) buf;
bouncebuf = NULL;
ret = ioctl(fd, DIOCGSECTORSIZE, &secsz);
if (ret != 0)
return (ret);
/*
* Handling reads of arbitrary offset and size - multi-sector case
* and single-sector case.
*
* Multi-sector Case
* (do_tail_read = true if tail > 0)
*
* |<----------------------total_size--------------------->|
* | |
* |<--head-->|<--------------bytes------------>|<--tail-->|
* | | | |
* | | |<~full_sec_size~>| | |
* +------------------+ +------------------+
* | |0101010| . . . |0101011| |
* +------------------+ +------------------+
* start_sec start_sec + n
*
*
* Single-sector Case
* (do_tail_read = false)
*
* |<------total_size = secsz----->|
* | |
* |<-head->|<---bytes--->|<-tail->|
* +-------------------------------+
* | |0101010101010| |
* +-------------------------------+
* start_sec
*/
start_sec = offset / secsz;
head = offset % secsz;
total_size = roundup2(head + bytes, secsz);
tail = total_size - (head + bytes);
do_tail_read = ((tail > 0) && (head + bytes > secsz));
full_sec_size = total_size;
if (head > 0)
full_sec_size -= secsz;
if (do_tail_read)
full_sec_size -= secsz;
/* Return of partial sector data requires a bounce buffer. */
if ((head > 0) || do_tail_read || bytes < secsz) {
bouncebuf = malloc(secsz);
if (bouncebuf == NULL) {
printf("vdev_read: out of memory\n");
return (ENOMEM);
}
}
if (lseek(fd, start_sec * secsz, SEEK_SET) == -1) {
ret = errno;
goto error;
}
/* Partial data return from first sector */
if (head > 0) {
res = read(fd, bouncebuf, secsz);
if (res != secsz) {
ret = EIO;
goto error;
}
memcpy(outbuf, bouncebuf + head, min(secsz - head, bytes));
outbuf += min(secsz - head, bytes);
}
/*
* Full data return from read sectors.
* Note, there is still corner case where we read
* from sector boundary, but less than sector size, e.g. reading 512B
* from 4k sector.
*/
if (full_sec_size > 0) {
if (bytes < full_sec_size) {
res = read(fd, bouncebuf, secsz);
if (res != secsz) {
ret = EIO;
goto error;
}
memcpy(outbuf, bouncebuf, bytes);
} else {
res = read(fd, outbuf, full_sec_size);
if (res != full_sec_size) {
ret = EIO;
goto error;
}
outbuf += full_sec_size;
}
}
/* Partial data return from last sector */
if (do_tail_read) {
res = read(fd, bouncebuf, secsz);
if (res != secsz) {
ret = EIO;
goto error;
}
memcpy(outbuf, bouncebuf, secsz - tail);
}
ret = 0;
error:
free(bouncebuf);
return (ret);
}
static int
vdev_write(vdev_t *vdev, off_t offset, void *buf, size_t bytes)
{
int fd, ret;
size_t head, tail, total_size, full_sec_size;
unsigned secsz, do_tail_write;
off_t start_sec;
ssize_t res;
char *outbuf, *bouncebuf;
fd = (uintptr_t)vdev->v_priv;
outbuf = (char *)buf;
bouncebuf = NULL;
ret = ioctl(fd, DIOCGSECTORSIZE, &secsz);
if (ret != 0)
return (ret);
start_sec = offset / secsz;
head = offset % secsz;
total_size = roundup2(head + bytes, secsz);
tail = total_size - (head + bytes);
do_tail_write = ((tail > 0) && (head + bytes > secsz));
full_sec_size = total_size;
if (head > 0)
full_sec_size -= secsz;
if (do_tail_write)
full_sec_size -= secsz;
/* Partial sector write requires a bounce buffer. */
if ((head > 0) || do_tail_write || bytes < secsz) {
bouncebuf = malloc(secsz);
if (bouncebuf == NULL) {
printf("vdev_write: out of memory\n");
return (ENOMEM);
}
}
if (lseek(fd, start_sec * secsz, SEEK_SET) == -1) {
ret = errno;
goto error;
}
/* Partial data for first sector */
if (head > 0) {
res = read(fd, bouncebuf, secsz);
if ((unsigned)res != secsz) {
ret = EIO;
goto error;
}
memcpy(bouncebuf + head, outbuf, min(secsz - head, bytes));
(void) lseek(fd, -secsz, SEEK_CUR);
res = write(fd, bouncebuf, secsz);
if ((unsigned)res != secsz) {
ret = EIO;
goto error;
}
outbuf += min(secsz - head, bytes);
}
/*
* Full data write to sectors.
* Note, there is still corner case where we write
* to sector boundary, but less than sector size, e.g. write 512B
* to 4k sector.
*/
if (full_sec_size > 0) {
if (bytes < full_sec_size) {
res = read(fd, bouncebuf, secsz);
if ((unsigned)res != secsz) {
ret = EIO;
goto error;
}
memcpy(bouncebuf, outbuf, bytes);
(void) lseek(fd, -secsz, SEEK_CUR);
res = write(fd, bouncebuf, secsz);
if ((unsigned)res != secsz) {
ret = EIO;
goto error;
}
} else {
res = write(fd, outbuf, full_sec_size);
if ((unsigned)res != full_sec_size) {
ret = EIO;
goto error;
}
outbuf += full_sec_size;
}
}
/* Partial data write to last sector */
if (do_tail_write) {
res = read(fd, bouncebuf, secsz);
if ((unsigned)res != secsz) {
ret = EIO;
goto error;
}
memcpy(bouncebuf, outbuf, secsz - tail);
(void) lseek(fd, -secsz, SEEK_CUR);
res = write(fd, bouncebuf, secsz);
if ((unsigned)res != secsz) {
ret = EIO;
goto error;
}
}
ret = 0;
error:
free(bouncebuf);
return (ret);
}
static int
zfs_dev_init(void)
{
spa_t *spa;
spa_t *next;
spa_t *prev;
zfs_init();
if (archsw.arch_zfs_probe == NULL)
return (ENXIO);
archsw.arch_zfs_probe();
prev = NULL;
spa = STAILQ_FIRST(&zfs_pools);
while (spa != NULL) {
next = STAILQ_NEXT(spa, spa_link);
if (zfs_spa_init(spa)) {
if (prev == NULL)
STAILQ_REMOVE_HEAD(&zfs_pools, spa_link);
else
STAILQ_REMOVE_AFTER(&zfs_pools, prev, spa_link);
} else
prev = spa;
spa = next;
}
return (0);
}
struct zfs_probe_args {
int fd;
const char *devname;
uint64_t *pool_guid;
u_int secsz;
};
static int
zfs_diskread(void *arg, void *buf, size_t blocks, uint64_t offset)
{
struct zfs_probe_args *ppa;
ppa = (struct zfs_probe_args *)arg;
return (vdev_read(NULL, (void *)(uintptr_t)ppa->fd,
offset * ppa->secsz, buf, blocks * ppa->secsz));
}
static int
zfs_probe(int fd, uint64_t *pool_guid)
{
spa_t *spa;
int ret;
spa = NULL;
ret = vdev_probe(vdev_read, vdev_write, (void *)(uintptr_t)fd, &spa);
if (ret == 0 && pool_guid != NULL)
if (*pool_guid == 0)
*pool_guid = spa->spa_guid;
return (ret);
}
static int
zfs_probe_partition(void *arg, const char *partname,
const struct ptable_entry *part)
{
struct zfs_probe_args *ppa, pa;
struct ptable *table;
char devname[32];
int ret;
/* Probe only freebsd-zfs and freebsd partitions */
if (part->type != PART_FREEBSD &&
part->type != PART_FREEBSD_ZFS)
return (0);
ppa = (struct zfs_probe_args *)arg;
strncpy(devname, ppa->devname, strlen(ppa->devname) - 1);
devname[strlen(ppa->devname) - 1] = '\0';
snprintf(devname, sizeof(devname), "%s%s:", devname, partname);
pa.fd = open(devname, O_RDWR);
if (pa.fd == -1)
return (0);
ret = zfs_probe(pa.fd, ppa->pool_guid);
if (ret == 0)
return (0);
/* Do we have BSD label here? */
if (part->type == PART_FREEBSD) {
pa.devname = devname;
pa.pool_guid = ppa->pool_guid;
pa.secsz = ppa->secsz;
table = ptable_open(&pa, part->end - part->start + 1,
ppa->secsz, zfs_diskread);
if (table != NULL) {
ptable_iterate(table, &pa, zfs_probe_partition);
ptable_close(table);
}
}
close(pa.fd);
return (0);
}
/*
* Return bootenv nvlist from pool label.
*/
int
zfs_get_bootenv(void *vdev, nvlist_t **benvp)
{
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
nvlist_t *benv = NULL;
vdev_t *vd;
spa_t *spa;
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (ENOTSUP);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
if (spa->spa_bootenv == NULL) {
STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children,
v_childlink) {
benv = vdev_read_bootenv(vd);
if (benv != NULL)
break;
}
spa->spa_bootenv = benv;
} else {
benv = spa->spa_bootenv;
}
if (benv == NULL)
return (ENOENT);
*benvp = benv;
return (0);
}
/*
* Store nvlist to pool label bootenv area. Also updates cached pointer in spa.
*/
int
zfs_set_bootenv(void *vdev, nvlist_t *benv)
{
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
spa_t *spa;
vdev_t *vd;
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (ENOTSUP);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, v_childlink) {
vdev_write_bootenv(vd, benv);
}
spa->spa_bootenv = benv;
return (0);
}
/*
* Get bootonce value by key. The bootonce <key, value> pair is removed
* from the bootenv nvlist and the remaining nvlist is committed back to disk.
*/
int
zfs_get_bootonce(void *vdev, const char *key, char *buf, size_t size)
{
nvlist_t *benv;
char *result = NULL;
int result_size, rv;
if ((rv = zfs_get_bootenv(vdev, &benv)) != 0)
return (rv);
if ((rv = nvlist_find(benv, key, DATA_TYPE_STRING, NULL,
&result, &result_size)) == 0) {
if (result_size == 0) {
/* ignore empty string */
rv = ENOENT;
} else {
size = MIN((size_t)result_size + 1, size);
strlcpy(buf, result, size);
}
(void) nvlist_remove(benv, key, DATA_TYPE_STRING);
(void) zfs_set_bootenv(vdev, benv);
}
return (rv);
}
/*
* nvstore backend.
*/
static int zfs_nvstore_setter(void *, int, const char *,
const void *, size_t);
static int zfs_nvstore_setter_str(void *, const char *, const char *,
const char *);
static int zfs_nvstore_unset_impl(void *, const char *, bool);
static int zfs_nvstore_setenv(void *, void *);
/*
* nvstore is only present for current rootfs pool.
*/
static int
zfs_nvstore_sethook(struct env_var *ev, int flags __unused, const void *value)
{
struct zfs_devdesc *dev;
int rv;
archsw.arch_getdev((void **)&dev, NULL, NULL);
if (dev == NULL)
return (ENXIO);
rv = zfs_nvstore_setter_str(dev, NULL, ev->ev_name, value);
free(dev);
return (rv);
}
/*
* nvstore is only present for current rootfs pool.
*/
static int
zfs_nvstore_unsethook(struct env_var *ev)
{
struct zfs_devdesc *dev;
int rv;
archsw.arch_getdev((void **)&dev, NULL, NULL);
if (dev == NULL)
return (ENXIO);
rv = zfs_nvstore_unset_impl(dev, ev->ev_name, false);
free(dev);
return (rv);
}
static int
zfs_nvstore_getter(void *vdev, const char *name, void **data)
{
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
spa_t *spa;
nvlist_t *nv;
char *str, **ptr;
int size;
int rv;
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (ENOTSUP);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
if (spa->spa_bootenv == NULL)
return (ENXIO);
if (nvlist_find(spa->spa_bootenv, OS_NVSTORE, DATA_TYPE_NVLIST,
NULL, &nv, NULL) != 0)
return (ENOENT);
rv = nvlist_find(nv, name, DATA_TYPE_STRING, NULL, &str, &size);
if (rv == 0) {
ptr = (char **)data;
asprintf(ptr, "%.*s", size, str);
if (*data == NULL)
rv = ENOMEM;
}
nvlist_destroy(nv);
return (rv);
}
static int
zfs_nvstore_setter(void *vdev, int type, const char *name,
const void *data, size_t size)
{
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
spa_t *spa;
nvlist_t *nv;
int rv;
bool env_set = true;
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (ENOTSUP);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
if (spa->spa_bootenv == NULL)
return (ENXIO);
if (nvlist_find(spa->spa_bootenv, OS_NVSTORE, DATA_TYPE_NVLIST,
NULL, &nv, NULL) != 0) {
nv = nvlist_create(NV_UNIQUE_NAME);
if (nv == NULL)
return (ENOMEM);
}
rv = 0;
switch (type) {
case DATA_TYPE_INT8:
if (size != sizeof (int8_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_int8(nv, name, *(int8_t *)data);
break;
case DATA_TYPE_INT16:
if (size != sizeof (int16_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_int16(nv, name, *(int16_t *)data);
break;
case DATA_TYPE_INT32:
if (size != sizeof (int32_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_int32(nv, name, *(int32_t *)data);
break;
case DATA_TYPE_INT64:
if (size != sizeof (int64_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_int64(nv, name, *(int64_t *)data);
break;
case DATA_TYPE_BYTE:
if (size != sizeof (uint8_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_byte(nv, name, *(int8_t *)data);
break;
case DATA_TYPE_UINT8:
if (size != sizeof (uint8_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_uint8(nv, name, *(int8_t *)data);
break;
case DATA_TYPE_UINT16:
if (size != sizeof (uint16_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_uint16(nv, name, *(uint16_t *)data);
break;
case DATA_TYPE_UINT32:
if (size != sizeof (uint32_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_uint32(nv, name, *(uint32_t *)data);
break;
case DATA_TYPE_UINT64:
if (size != sizeof (uint64_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_uint64(nv, name, *(uint64_t *)data);
break;
case DATA_TYPE_STRING:
rv = nvlist_add_string(nv, name, data);
break;
case DATA_TYPE_BOOLEAN_VALUE:
if (size != sizeof (boolean_t)) {
rv = EINVAL;
break;
}
rv = nvlist_add_boolean_value(nv, name, *(boolean_t *)data);
break;
default:
rv = EINVAL;
break;
}
if (rv == 0) {
rv = nvlist_add_nvlist(spa->spa_bootenv, OS_NVSTORE, nv);
if (rv == 0) {
rv = zfs_set_bootenv(vdev, spa->spa_bootenv);
}
if (rv == 0) {
if (env_set) {
rv = zfs_nvstore_setenv(vdev,
nvpair_find(nv, name));
} else {
env_discard(env_getenv(name));
rv = 0;
}
}
}
nvlist_destroy(nv);
return (rv);
}
static int
get_int64(const char *data, int64_t *ip)
{
char *end;
int64_t val;
errno = 0;
val = strtoll(data, &end, 0);
if (errno != 0 || *data == '\0' || *end != '\0')
return (EINVAL);
*ip = val;
return (0);
}
static int
get_uint64(const char *data, uint64_t *ip)
{
char *end;
uint64_t val;
errno = 0;
val = strtoull(data, &end, 0);
if (errno != 0 || *data == '\0' || *end != '\0')
return (EINVAL);
*ip = val;
return (0);
}
/*
* Translate textual data to data type. If type is not set, and we are
* creating new pair, use DATA_TYPE_STRING.
*/
static int
zfs_nvstore_setter_str(void *vdev, const char *type, const char *name,
const char *data)
{
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
spa_t *spa;
nvlist_t *nv;
int rv;
data_type_t dt;
int64_t val;
uint64_t uval;
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (ENOTSUP);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
if (spa->spa_bootenv == NULL)
return (ENXIO);
if (nvlist_find(spa->spa_bootenv, OS_NVSTORE, DATA_TYPE_NVLIST,
NULL, &nv, NULL) != 0) {
nv = NULL;
}
if (type == NULL) {
nvp_header_t *nvh;
/*
* if there is no existing pair, default to string.
* Otherwise, use type from existing pair.
*/
nvh = nvpair_find(nv, name);
if (nvh == NULL) {
dt = DATA_TYPE_STRING;
} else {
nv_string_t *nvp_name;
nv_pair_data_t *nvp_data;
nvp_name = (nv_string_t *)(nvh + 1);
nvp_data = (nv_pair_data_t *)(&nvp_name->nv_data[0] +
NV_ALIGN4(nvp_name->nv_size));
dt = nvp_data->nv_type;
}
} else {
dt = nvpair_type_from_name(type);
}
nvlist_destroy(nv);
rv = 0;
switch (dt) {
case DATA_TYPE_INT8:
rv = get_int64(data, &val);
if (rv == 0) {
int8_t v = val;
rv = zfs_nvstore_setter(vdev, dt, name, &v, sizeof (v));
}
break;
case DATA_TYPE_INT16:
rv = get_int64(data, &val);
if (rv == 0) {
int16_t v = val;
rv = zfs_nvstore_setter(vdev, dt, name, &v, sizeof (v));
}
break;
case DATA_TYPE_INT32:
rv = get_int64(data, &val);
if (rv == 0) {
int32_t v = val;
rv = zfs_nvstore_setter(vdev, dt, name, &v, sizeof (v));
}
break;
case DATA_TYPE_INT64:
rv = get_int64(data, &val);
if (rv == 0) {
rv = zfs_nvstore_setter(vdev, dt, name, &val,
sizeof (val));
}
break;
case DATA_TYPE_BYTE:
rv = get_uint64(data, &uval);
if (rv == 0) {
uint8_t v = uval;
rv = zfs_nvstore_setter(vdev, dt, name, &v, sizeof (v));
}
break;
case DATA_TYPE_UINT8:
rv = get_uint64(data, &uval);
if (rv == 0) {
uint8_t v = uval;
rv = zfs_nvstore_setter(vdev, dt, name, &v, sizeof (v));
}
break;
case DATA_TYPE_UINT16:
rv = get_uint64(data, &uval);
if (rv == 0) {
uint16_t v = uval;
rv = zfs_nvstore_setter(vdev, dt, name, &v, sizeof (v));
}
break;
case DATA_TYPE_UINT32:
rv = get_uint64(data, &uval);
if (rv == 0) {
uint32_t v = uval;
rv = zfs_nvstore_setter(vdev, dt, name, &v, sizeof (v));
}
break;
case DATA_TYPE_UINT64:
rv = get_uint64(data, &uval);
if (rv == 0) {
rv = zfs_nvstore_setter(vdev, dt, name, &uval,
sizeof (uval));
}
break;
case DATA_TYPE_STRING:
rv = zfs_nvstore_setter(vdev, dt, name, data, strlen(data) + 1);
break;
case DATA_TYPE_BOOLEAN_VALUE:
rv = get_int64(data, &val);
if (rv == 0) {
boolean_t v = val;
rv = zfs_nvstore_setter(vdev, dt, name, &v, sizeof (v));
}
default:
rv = EINVAL;
}
return (rv);
}
static int
zfs_nvstore_unset_impl(void *vdev, const char *name, bool unset_env)
{
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
spa_t *spa;
nvlist_t *nv;
int rv;
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (ENOTSUP);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
if (spa->spa_bootenv == NULL)
return (ENXIO);
if (nvlist_find(spa->spa_bootenv, OS_NVSTORE, DATA_TYPE_NVLIST,
NULL, &nv, NULL) != 0)
return (ENOENT);
rv = nvlist_remove(nv, name, DATA_TYPE_UNKNOWN);
if (rv == 0) {
if (nvlist_next_nvpair(nv, NULL) == NULL) {
rv = nvlist_remove(spa->spa_bootenv, OS_NVSTORE,
DATA_TYPE_NVLIST);
} else {
rv = nvlist_add_nvlist(spa->spa_bootenv,
OS_NVSTORE, nv);
}
if (rv == 0)
rv = zfs_set_bootenv(vdev, spa->spa_bootenv);
}
if (unset_env)
env_discard(env_getenv(name));
return (rv);
}
static int
zfs_nvstore_unset(void *vdev, const char *name)
{
return (zfs_nvstore_unset_impl(vdev, name, true));
}
static int
zfs_nvstore_print(void *vdev __unused, void *ptr)
{
nvpair_print(ptr, 0);
return (0);
}
/*
* Create environment variable from nvpair.
* set hook will update nvstore with new value, unset hook will remove
* variable from nvstore.
*/
static int
zfs_nvstore_setenv(void *vdev __unused, void *ptr)
{
nvp_header_t *nvh = ptr;
nv_string_t *nvp_name, *nvp_value;
nv_pair_data_t *nvp_data;
char *name, *value;
int rv = 0;
if (nvh == NULL)
return (ENOENT);
nvp_name = (nv_string_t *)(nvh + 1);
nvp_data = (nv_pair_data_t *)(&nvp_name->nv_data[0] +
NV_ALIGN4(nvp_name->nv_size));
if ((name = nvstring_get(nvp_name)) == NULL)
return (ENOMEM);
value = NULL;
switch (nvp_data->nv_type) {
case DATA_TYPE_BYTE:
case DATA_TYPE_UINT8:
(void) asprintf(&value, "%uc",
*(unsigned *)&nvp_data->nv_data[0]);
if (value == NULL)
rv = ENOMEM;
break;
case DATA_TYPE_INT8:
(void) asprintf(&value, "%c", *(int *)&nvp_data->nv_data[0]);
if (value == NULL)
rv = ENOMEM;
break;
case DATA_TYPE_INT16:
(void) asprintf(&value, "%hd", *(short *)&nvp_data->nv_data[0]);
if (value == NULL)
rv = ENOMEM;
break;
case DATA_TYPE_UINT16:
(void) asprintf(&value, "%hu",
*(unsigned short *)&nvp_data->nv_data[0]);
if (value == NULL)
rv = ENOMEM;
break;
case DATA_TYPE_BOOLEAN_VALUE:
case DATA_TYPE_INT32:
(void) asprintf(&value, "%d", *(int *)&nvp_data->nv_data[0]);
if (value == NULL)
rv = ENOMEM;
break;
case DATA_TYPE_UINT32:
(void) asprintf(&value, "%u",
*(unsigned *)&nvp_data->nv_data[0]);
if (value == NULL)
rv = ENOMEM;
break;
case DATA_TYPE_INT64:
(void) asprintf(&value, "%jd",
(intmax_t)*(int64_t *)&nvp_data->nv_data[0]);
if (value == NULL)
rv = ENOMEM;
break;
case DATA_TYPE_UINT64:
(void) asprintf(&value, "%ju",
(uintmax_t)*(uint64_t *)&nvp_data->nv_data[0]);
if (value == NULL)
rv = ENOMEM;
break;
case DATA_TYPE_STRING:
nvp_value = (nv_string_t *)&nvp_data->nv_data[0];
if ((value = nvstring_get(nvp_value)) == NULL) {
rv = ENOMEM;
break;
}
break;
default:
rv = EINVAL;
break;
}
if (value != NULL) {
rv = env_setenv(name, EV_VOLATILE | EV_NOHOOK, value,
zfs_nvstore_sethook, zfs_nvstore_unsethook);
free(value);
}
free(name);
return (rv);
}
static int
zfs_nvstore_iterate(void *vdev, int (*cb)(void *, void *))
{
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
spa_t *spa;
nvlist_t *nv;
nvp_header_t *nvh;
int rv;
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (ENOTSUP);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
if (spa->spa_bootenv == NULL)
return (ENXIO);
if (nvlist_find(spa->spa_bootenv, OS_NVSTORE, DATA_TYPE_NVLIST,
NULL, &nv, NULL) != 0)
return (ENOENT);
rv = 0;
nvh = NULL;
while ((nvh = nvlist_next_nvpair(nv, nvh)) != NULL) {
rv = cb(vdev, nvh);
if (rv != 0)
break;
}
return (rv);
}
nvs_callbacks_t nvstore_zfs_cb = {
.nvs_getter = zfs_nvstore_getter,
.nvs_setter = zfs_nvstore_setter,
.nvs_setter_str = zfs_nvstore_setter_str,
.nvs_unset = zfs_nvstore_unset,
.nvs_print = zfs_nvstore_print,
.nvs_iterate = zfs_nvstore_iterate
};
int
zfs_attach_nvstore(void *vdev)
{
struct zfs_devdesc *dev = vdev;
spa_t *spa;
uint64_t version;
int rv;
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (ENOTSUP);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
rv = nvlist_find(spa->spa_bootenv, BOOTENV_VERSION, DATA_TYPE_UINT64,
NULL, &version, NULL);
if (rv != 0 || version != VB_NVLIST) {
return (ENXIO);
}
dev = malloc(sizeof (*dev));
if (dev == NULL)
return (ENOMEM);
memcpy(dev, vdev, sizeof (*dev));
rv = nvstore_init(spa->spa_name, &nvstore_zfs_cb, dev);
if (rv != 0)
free(dev);
else
rv = zfs_nvstore_iterate(dev, zfs_nvstore_setenv);
return (rv);
}
int
zfs_probe_dev(const char *devname, uint64_t *pool_guid)
{
struct ptable *table;
struct zfs_probe_args pa;
uint64_t mediasz;
int ret;
if (pool_guid)
*pool_guid = 0;
pa.fd = open(devname, O_RDWR);
if (pa.fd == -1)
return (ENXIO);
/* Probe the whole disk */
ret = zfs_probe(pa.fd, pool_guid);
if (ret == 0)
return (0);
/* Probe each partition */
ret = ioctl(pa.fd, DIOCGMEDIASIZE, &mediasz);
if (ret == 0)
ret = ioctl(pa.fd, DIOCGSECTORSIZE, &pa.secsz);
if (ret == 0) {
pa.devname = devname;
pa.pool_guid = pool_guid;
table = ptable_open(&pa, mediasz / pa.secsz, pa.secsz,
zfs_diskread);
if (table != NULL) {
ptable_iterate(table, &pa, zfs_probe_partition);
ptable_close(table);
}
}
close(pa.fd);
if (pool_guid && *pool_guid == 0)
ret = ENXIO;
return (ret);
}
/*
* Print information about ZFS pools
*/
static int
zfs_dev_print(int verbose)
{
spa_t *spa;
char line[80];
int ret = 0;
if (STAILQ_EMPTY(&zfs_pools))
return (0);
printf("%s devices:", zfs_dev.dv_name);
if ((ret = pager_output("\n")) != 0)
return (ret);
if (verbose) {
return (spa_all_status());
}
STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
snprintf(line, sizeof(line), " zfs:%s\n", spa->spa_name);
ret = pager_output(line);
if (ret != 0)
break;
}
return (ret);
}
/*
* Attempt to open the pool described by (dev) for use by (f).
*/
static int
zfs_dev_open(struct open_file *f, ...)
{
va_list args;
struct zfs_devdesc *dev;
struct zfsmount *mount;
spa_t *spa;
int rv;
va_start(args, f);
dev = va_arg(args, struct zfs_devdesc *);
va_end(args);
if ((spa = spa_find_by_dev(dev)) == NULL)
return (ENXIO);
STAILQ_FOREACH(mount, &zfsmount, next) {
if (spa->spa_guid == mount->spa->spa_guid)
break;
}
rv = 0;
/* This device is not set as currdev, mount us private copy. */
if (mount == NULL)
rv = zfs_mount(zfs_fmtdev(dev), NULL, (void **)&mount);
if (rv == 0) {
f->f_devdata = mount;
free(dev);
}
return (rv);
}
static int
zfs_dev_close(struct open_file *f)
{
struct zfsmount *mnt, *mount;
mnt = f->f_devdata;
STAILQ_FOREACH(mount, &zfsmount, next) {
if (mnt->spa->spa_guid == mount->spa->spa_guid)
break;
}
/*
* devclose() will free f->f_devdata, but since we do have
* pointer to zfsmount structure in f->f_devdata, and
* zfs_unmount() will also free the zfsmount structure,
* we will get double free. To prevent double free,
* we must set f_devdata to NULL there.
*/
if (mount != NULL)
f->f_devdata = NULL;
return (0);
}
static int
zfs_dev_strategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize)
{
return (ENOSYS);
}
struct devsw zfs_dev = {
.dv_name = "zfs",
.dv_type = DEVT_ZFS,
.dv_init = zfs_dev_init,
.dv_strategy = zfs_dev_strategy,
.dv_open = zfs_dev_open,
.dv_close = zfs_dev_close,
.dv_ioctl = noioctl,
.dv_print = zfs_dev_print,
.dv_cleanup = NULL
};
int
zfs_parsedev(struct zfs_devdesc *dev, const char *devspec, const char **path)
{
static char rootname[ZFS_MAXNAMELEN];
static char poolname[ZFS_MAXNAMELEN];
spa_t *spa;
const char *end;
const char *np;
const char *sep;
int rv;
np = devspec;
if (*np != ':')
return (EINVAL);
np++;
end = strrchr(np, ':');
if (end == NULL)
return (EINVAL);
sep = strchr(np, '/');
if (sep == NULL || sep >= end)
sep = end;
memcpy(poolname, np, sep - np);
poolname[sep - np] = '\0';
if (sep < end) {
sep++;
memcpy(rootname, sep, end - sep);
rootname[end - sep] = '\0';
}
else
rootname[0] = '\0';
spa = spa_find_by_name(poolname);
if (!spa)
return (ENXIO);
dev->pool_guid = spa->spa_guid;
rv = zfs_lookup_dataset(spa, rootname, &dev->root_guid);
if (rv != 0)
return (rv);
if (path != NULL)
*path = (*end == '\0') ? end : end + 1;
dev->dd.d_dev = &zfs_dev;
return (0);
}
char *
zfs_fmtdev(void *vdev)
{
static char rootname[ZFS_MAXNAMELEN];
static char buf[2 * ZFS_MAXNAMELEN + 8];
struct zfs_devdesc *dev = (struct zfs_devdesc *)vdev;
spa_t *spa;
buf[0] = '\0';
if (dev->dd.d_dev->dv_type != DEVT_ZFS)
return (buf);
/* Do we have any pools? */
spa = STAILQ_FIRST(&zfs_pools);
if (spa == NULL)
return (buf);
if (dev->pool_guid == 0)
dev->pool_guid = spa->spa_guid;
else
spa = spa_find_by_guid(dev->pool_guid);
if (spa == NULL) {
printf("ZFS: can't find pool by guid\n");
return (buf);
}
if (dev->root_guid == 0 && zfs_get_root(spa, &dev->root_guid)) {
printf("ZFS: can't find root filesystem\n");
return (buf);
}
if (zfs_rlookup(spa, dev->root_guid, rootname)) {
printf("ZFS: can't find filesystem by guid\n");
return (buf);
}
if (rootname[0] == '\0')
snprintf(buf, sizeof(buf), "%s:%s:", dev->dd.d_dev->dv_name,
spa->spa_name);
else
snprintf(buf, sizeof(buf), "%s:%s/%s:", dev->dd.d_dev->dv_name,
spa->spa_name, rootname);
return (buf);
}
static int
split_devname(const char *name, char *poolname, size_t size,
const char **dsnamep)
{
const char *dsname;
size_t len;
ASSERT(name != NULL);
ASSERT(poolname != NULL);
len = strlen(name);
dsname = strchr(name, '/');
if (dsname != NULL) {
len = dsname - name;
dsname++;
} else
dsname = "";
if (len + 1 > size)
return (EINVAL);
strlcpy(poolname, name, len + 1);
if (dsnamep != NULL)
*dsnamep = dsname;
return (0);
}
int
zfs_list(const char *name)
{
static char poolname[ZFS_MAXNAMELEN];
uint64_t objid;
spa_t *spa;
const char *dsname;
int rv;
if (split_devname(name, poolname, sizeof(poolname), &dsname) != 0)
return (EINVAL);
spa = spa_find_by_name(poolname);
if (!spa)
return (ENXIO);
rv = zfs_lookup_dataset(spa, dsname, &objid);
if (rv != 0)
return (rv);
return (zfs_list_dataset(spa, objid));
}
void
init_zfs_boot_options(const char *currdev_in)
{
char poolname[ZFS_MAXNAMELEN];
char *beroot, *currdev;
spa_t *spa;
int currdev_len;
const char *dsname;
currdev = NULL;
currdev_len = strlen(currdev_in);
if (currdev_len == 0)
return;
if (strncmp(currdev_in, "zfs:", 4) != 0)
return;
currdev = strdup(currdev_in);
if (currdev == NULL)
return;
/* Remove the trailing : */
currdev[currdev_len - 1] = '\0';
setenv("zfs_be_active", currdev, 1);
setenv("zfs_be_currpage", "1", 1);
/* Remove the last element (current bootenv) */
beroot = strrchr(currdev, '/');
if (beroot != NULL)
beroot[0] = '\0';
beroot = strchr(currdev, ':') + 1;
setenv("zfs_be_root", beroot, 1);
if (split_devname(beroot, poolname, sizeof(poolname), &dsname) != 0)
return;
spa = spa_find_by_name(poolname);
if (spa == NULL)
return;
zfs_bootenv_initial("bootenvs", spa, beroot, dsname, 0);
zfs_checkpoints_initial(spa, beroot, dsname);
free(currdev);
}
static void
zfs_checkpoints_initial(spa_t *spa, const char *name, const char *dsname)
{
char envname[32];
if (spa->spa_uberblock_checkpoint.ub_checkpoint_txg != 0) {
snprintf(envname, sizeof(envname), "zpool_checkpoint");
setenv(envname, name, 1);
spa->spa_uberblock = &spa->spa_uberblock_checkpoint;
spa->spa_mos = &spa->spa_mos_checkpoint;
zfs_bootenv_initial("bootenvs_check", spa, name, dsname, 1);
spa->spa_uberblock = &spa->spa_uberblock_master;
spa->spa_mos = &spa->spa_mos_master;
}
}
static void
zfs_bootenv_initial(const char *envprefix, spa_t *spa, const char *rootname,
const char *dsname, int checkpoint)
{
char envname[32], envval[256];
uint64_t objid;
int bootenvs_idx, rv;
SLIST_INIT(&zfs_be_head);
zfs_env_count = 0;
rv = zfs_lookup_dataset(spa, dsname, &objid);
if (rv != 0)
return;
rv = zfs_callback_dataset(spa, objid, zfs_belist_add);
bootenvs_idx = 0;
/* Populate the initial environment variables */
SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) {
/* Enumerate all bootenvs for general usage */
snprintf(envname, sizeof(envname), "%s[%d]",
envprefix, bootenvs_idx);
snprintf(envval, sizeof(envval), "zfs:%s%s/%s",
checkpoint ? "!" : "", rootname, zfs_be->name);
rv = setenv(envname, envval, 1);
if (rv != 0)
break;
bootenvs_idx++;
}
snprintf(envname, sizeof(envname), "%s_count", envprefix);
snprintf(envval, sizeof(envval), "%d", bootenvs_idx);
setenv(envname, envval, 1);
/* Clean up the SLIST of ZFS BEs */
while (!SLIST_EMPTY(&zfs_be_head)) {
zfs_be = SLIST_FIRST(&zfs_be_head);
SLIST_REMOVE_HEAD(&zfs_be_head, entries);
free(zfs_be->name);
free(zfs_be);
}
}
int
zfs_bootenv(const char *name)
{
char poolname[ZFS_MAXNAMELEN], *root;
const char *dsname;
char becount[4];
uint64_t objid;
spa_t *spa;
int rv, pages, perpage, currpage;
if (name == NULL)
return (EINVAL);
if ((root = getenv("zfs_be_root")) == NULL)
return (EINVAL);
if (strcmp(name, root) != 0) {
if (setenv("zfs_be_root", name, 1) != 0)
return (ENOMEM);
}
SLIST_INIT(&zfs_be_head);
zfs_env_count = 0;
if (split_devname(name, poolname, sizeof(poolname), &dsname) != 0)
return (EINVAL);
spa = spa_find_by_name(poolname);
if (!spa)
return (ENXIO);
rv = zfs_lookup_dataset(spa, dsname, &objid);
if (rv != 0)
return (rv);
rv = zfs_callback_dataset(spa, objid, zfs_belist_add);
/* Calculate and store the number of pages of BEs */
perpage = (ZFS_BE_LAST - ZFS_BE_FIRST + 1);
pages = (zfs_env_count / perpage) + ((zfs_env_count % perpage) > 0 ? 1 : 0);
snprintf(becount, 4, "%d", pages);
if (setenv("zfs_be_pages", becount, 1) != 0)
return (ENOMEM);
/* Roll over the page counter if it has exceeded the maximum */
currpage = strtol(getenv("zfs_be_currpage"), NULL, 10);
if (currpage > pages) {
if (setenv("zfs_be_currpage", "1", 1) != 0)
return (ENOMEM);
}
/* Populate the menu environment variables */
zfs_set_env();
/* Clean up the SLIST of ZFS BEs */
while (!SLIST_EMPTY(&zfs_be_head)) {
zfs_be = SLIST_FIRST(&zfs_be_head);
SLIST_REMOVE_HEAD(&zfs_be_head, entries);
free(zfs_be->name);
free(zfs_be);
}
return (rv);
}
int
zfs_belist_add(const char *name, uint64_t value __unused)
{
/* Skip special datasets that start with a $ character */
if (strncmp(name, "$", 1) == 0) {
return (0);
}
/* Add the boot environment to the head of the SLIST */
zfs_be = malloc(sizeof(struct zfs_be_entry));
if (zfs_be == NULL) {
return (ENOMEM);
}
zfs_be->name = strdup(name);
if (zfs_be->name == NULL) {
free(zfs_be);
return (ENOMEM);
}
SLIST_INSERT_HEAD(&zfs_be_head, zfs_be, entries);
zfs_env_count++;
return (0);
}
int
zfs_set_env(void)
{
char envname[32], envval[256];
char *beroot, *pagenum;
int rv, page, ctr;
beroot = getenv("zfs_be_root");
if (beroot == NULL) {
return (1);
}
pagenum = getenv("zfs_be_currpage");
if (pagenum != NULL) {
page = strtol(pagenum, NULL, 10);
} else {
page = 1;
}
ctr = 1;
rv = 0;
zfs_env_index = ZFS_BE_FIRST;
SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) {
/* Skip to the requested page number */
if (ctr <= ((ZFS_BE_LAST - ZFS_BE_FIRST + 1) * (page - 1))) {
ctr++;
continue;
}
snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index);
snprintf(envval, sizeof(envval), "%s", zfs_be->name);
rv = setenv(envname, envval, 1);
if (rv != 0) {
break;
}
snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index);
rv = setenv(envname, envval, 1);
if (rv != 0){
break;
}
snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index);
rv = setenv(envname, "set_bootenv", 1);
if (rv != 0){
break;
}
snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index);
snprintf(envval, sizeof(envval), "zfs:%s/%s", beroot, zfs_be->name);
rv = setenv(envname, envval, 1);
if (rv != 0){
break;
}
zfs_env_index++;
if (zfs_env_index > ZFS_BE_LAST) {
break;
}
}
for (; zfs_env_index <= ZFS_BE_LAST; zfs_env_index++) {
snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index);
(void)unsetenv(envname);
snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index);
(void)unsetenv(envname);
snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index);
(void)unsetenv(envname);
snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index);
(void)unsetenv(envname);
}
return (rv);
}